
- 49. The force diagram (not to scale) for the block is shown below. \vec{N} is the normal force exerted by the floor and $m\vec{q}$ is the force of gravity.
 - (a) The x component of Newton's second law is $F\cos\theta=ma$, where m is the mass of block and a is the x component of its acceleration. We obtain

$$a = \frac{F \cos \theta}{m} = \frac{(12.0 \,\mathrm{N}) \cos 25.0^{\circ}}{5.00 \,\mathrm{kg}} = 2.18 \,\mathrm{m/s^2} \,.$$

This is its acceleration provided it remains in contact with the

floor. Assuming it does, we find the value of N (and if N is positive, then the assumption is true but if N is negative then the block leaves the floor). The y component of Newton's second law becomes $N+F\sin\theta-mg=0$, so $N=mg-F\sin\theta=(5.00)(9.8)-(12.0)\sin 25.0^\circ=43.9\,\mathrm{N}$. Hence the block remains on the floor and its acceleration is $a=2.18\,\mathrm{m/s}^2$.

(b) If F is the minimum force for which the block leaves the floor, then N=0 and the y component of the acceleration vanishes. The y component of the second law becomes $F \sin \theta - mg = 0$, so

$$F = \frac{mg}{\sin \theta} = \frac{(5.00)(9.8)}{\sin 25.0^{\circ}} = 116 \text{ N}.$$

(c) The acceleration is still in the x direction and is still given by the equation developed in part (a):

$$a = \frac{F\cos\theta}{m} = \frac{116\cos 25^{\circ}}{5.00} = 21.0 \text{ m/s}^2.$$